Grippers are widely used for the gripping, manipulation, and assembly of objects with a wide range of scales, shapes, and quantities in research, industry, and our daily lives. A simple yet universal solution is very challenging. Here, we manage to address this challenge utilizing a simple shape memory polymer (SMP) block. The embedding of objects into the SMP enables the gripping while the shape recovery upon stimulation facilitates the releasing. Systematic studies show that friction, suction, and interlocking effects dominate the grip force individually or collectively. This universal SMP gripper design provides a versatile solution to grip and manipulate multiscaled (from centimeter scale down to 10-μm scale) 3D objects with arbitrary shapes, in individual, deterministic, or massive, selective ways. These extraordinary capabilities are demonstrated by the gripping and manipulation of macroscaled objects, mesoscaled steel sphere arrays and microparticles, and the selective and patterned transfer printing of micro light-emitting diodes.
This article was first featured at https://ift.tt/2OSrCHu on February 14, 2020 at 02:14PM by Linghu, C., Zhang, S., Wang, C., Yu, K., Li, C., Zeng, Y., Zhu, H., Jin, X., You, Z., Song, J.
More Stories
Can this possibly be true? “Metal 3D printing is now possible on any 3D printer…with the right settings and a few minor upgrades like a hardened steel nozzle…” – July 2 2023 at 04:59PM
New NASA Funding Ignites 25 3D Printing Projects in Space Exploration – June 18 2023 at 04:34PM
Nvidia AI produces 3D models from 2D videos 3D printing applications forthcoming? – June 15 2023 at 02:55AM